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LETTER TO THE EDITOR

Broken rotation symmetry in the fractional quantum Hall
system

K Musaelian† and Robert Joynt‡
† Department of Physics, University of Wisconsin—Madison, 1150 University Avenue, Madison,
WI 53706, USA
‡ Materials Physics Laboratory, Helsinki University of Technology, FIN-02150 Espoo, Finland

Received 23 November 1995

Abstract. We demonstrate that the two-dimensional electron system in a strong perpendicular
magnetic field has stable states which break rotational butnot translational symmetry. The
Laughlin fluid becomes unstable to these states in quantum wells whose thickness exceeds a
critical value which depends on the electron density. The order parameter at 1/3 reduced density
resembles that of a nematic liquid crystal, in that a residual twofold rotation axis is present in
the low-symmetry phase. At filling factors 1/5 and 1/7, there are states with fourfold and sixfold
axes, as well. We discuss the experimental detection of these phases.

The construction of the Laughlin fluid and its identification with the fractional quantum Hall
effect (FQHE) marked the discovery of a qualitatively new many-body phase [1]. Until that
discovery, it was generally assumed that the only phases present in the two-dimensional
electron system were the usual liquid phase and the Wigner solid, both of which are present
in the classical one-component Coulomb plasma phase diagram. A hexatic phase is also
a possibility in this system [2] as well as in the logarithmic potential case perhaps more
relevant to the FQHE [3]. This theoretical background, and the experimental discovery
of phases which seem to have properties unlike either the Laughlin liquid or the Wigner
solid [4] (‘Hall insulator’), led us to an investigation of the possibility of broken rotational
symmetry (BRS) in the two-dimensional electron system in strong field. We found that
several liquid crystal-like phases occur, though these appear to resemble more closely
nematic than hexatic phases.

We begin with the case where the electron densityn satisfiesn = 1
3/2πl2, wherel is

the magnetic length:l−2 = eB/h̄c andB is the external field, taken to be in the negative
z-direction. In this paper we work in the limit of large field. This is the density for the 1/3
quantum Hall state. Consider the following wavefunction for the disc-shaped system:

9α(zi) =
N∏

i<j

[(zi − zj )(zi − zj − αl)(zi − zj + αl)] exp

(
−

∑
i

|zi |2/4l2

)
. (1)

Herezi = xi+iyi andi andj are particle indices.α is a complex number. This wavefunction
is antisymmetric in the particle indices for allα, lies entirely in the lowest Landau level,
and reduces to the Laughlin wavefunction atα = 0. It also shares with the Laughlin
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wavefunction the characteristic of having uniform density (far from the edges of the disc).
However, the two-particle correlation function is a different matter:

gα(r) = N(N − 1)

n2

( N∏
i>2

∫
d2zi

)
|ψα|2

/( ∏
i

∫
d2zi

)
|ψα|2. (2)

In this equationr = (x1−x2, y1−y2), andN is the total number of electrons. Translational
symmetry is not broken for the small values ofα with which we are concerned, as we shall
demonstrate below. Thusgα is a function only of the difference variabler. In contrast to the
Laughlin liquid, however, it does depend on the direction ofr. Let us takeα to be real. Then
the equivalent classical plasma interaction corresponding to9α is a logarithmic interaction
between rodlike charged objects lying along thex-axis. Accordingly,9α represents a
BRS state [5]. In general (Reα, Im α) is a director, not a vector, order parameter, since
9α = 9−α. Thusgα(r) does not have full rotation symmetry forα 6= 0 but does satisfy
gα(x, y) = gα(−x, y) = gα(x, −y) = gα(−x, −y).

Figure 1. A typical configuration of the particles in the Monte Carlo simulation of the state
given by (1) withα = 3.2. The anisotropy of the correlations is clearly evident.

To give a physical picture of this state, we display a typical configuration in a Monte
Carlo simulation governed by the probability distribution|9α|2 in figure 1, withα = 3.2.
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One notes immediately the stripes along the director, reminiscent of a nematic state. This
value ofα is unphysically large and is chosen for purposes of illustration only.

Under what conditions is such a BRS state stable? Or, given an interelectron potential
V (ri − rj ), when do we haveUα = 〈9α|V |9α〉 < U0 = 〈90|V |90〉? It is easy to see,
expanding the polynomial in (1) and taking the limit|r| → 0 in (2), thatgα(r) ∼ r2 rather
thangα(r) ∼ r6. Thus for very short-rangeV , the Laughlin state is always favoured, as is
well known [6, 7].

In order to compare theα = 0 with the α 6= 0 state we performed Monte Carlo
simulations of the equivalent classical plasmas with 200 particles in the disc geometry, and
compared the energies of candidate ground states. (We believe that improvement of the
wavefunction by, for example, quantum Monte Carlo techniques [8] will not affect energy
differencesvery much.) In order to minimize the finite-size effect we compute the energies
of only 25 particles closest to the centre of the disc. We have checked that this procedure
gives the accepted value for the energy per particle in the case of a pure Coulomb potential
andα = 0.

From the computations we found that the Laughlin state is favoured for a pure Coulomb
potentialV (r) = e2/εr. The actual potential between electrons in a real two-dimensional
layer of finite thickness is softer, owing to the averaging of the charge density over the
third dimension. This has been discussed in detail by numerous authors and the choice of
potential depends on the shape of the well. We shall take the simple form of Zhang and
Das Sarma [9]. They showed thatV (r) = e2/ε(r2 + λ2)1/2 is a reasonable approximation
for a square quantum well and thatλ ≈ 0.2t , where t is the layer thickness of the well.
To understand the effect that this modification of the potential will have, note that the total
energy is given by

Uα = ne2

2ε

∫
d2r

(r2 + λ2)1/2
[gα(r) − 1]. (3)

We now plot the angle averaged correlation functions for different values ofα in figure 2.
There is incipient solid order asα increases, in that there is much more tendency towards
being able to identify shells of neighbours. At short distances, the correlation function is
proportional tor2, just as that for the Wigner crystal is, and in contrast to ther6 behaviour
of the Laughlin state. Overall, the softer potential favours finiteα: the correlation hole has
a larger effective radius, even though it is not as ‘deep’. The difference between the energy
per particle for a BRS state withα = 1 and the Laughlin state for different values ofλ is
plotted in figure 3. There is a critical valueλc at which the system undergoes a transition
to finite α. We compute this to beλc = 4.1 ± 1.5, which corresponds to a thickness of
t = 1600 Å, when B = 10 T . This transition is second order, unlike the transition to the
Wigner solid, which is probably first order. It has recently been pointed out that changing
t can induce the liquid–solid transition by a mechanism similar to that proposed here [10].
The critical value oft for them = 1/3 density is similar to that computed here, suggesting
that the energy balance between Laughlin, BRS, and crystalline states is a subtle one. We
expect that the BRS state occupies a fairly narrow range of parameter space between the
liquid and the crystal states, by analogy with hexatic phases. It is clear, in any case, that this
range of thickness values is experimentally accessible [11]. The energy balance between
the BRS and Wigner crystal state is currently under investigation [12].

The correlations are oscillatory even to infinite distances in a true crystalline state.
Inspection of figure 2 shows that the correlation function for the BRS state is flat at large
distances, demonstrating that long-range translational symmetry is not broken, and justifying
the identification of these states as liquid crystal states.
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Figure 2. The angle averaged pair correlation function for them = 1/3 state forα = 0
and α = 3.2. The α = 3.2 state shows incipient crystalline behaviour at short distances and
liquid-like behaviour at long distances.

We may construct similar wavefunctions form = 5 andm = 7.

9α(zi) =
N∏

i<j

[(zi − zj )(zi − zj − αl)(zi − zj + αl)(zi − zj − βl)(zi − zj + βl)]

× exp

(
−

∑
i

|zi |2/4l2

)
(4)

is an appropriate wavefunction form = 5 and

9α(zi) =
N∏

i<j

[(zi − zj )(zi − zj − αl)(zi − zj + αl)(zi − zj − βl)(zi − zj + βl)

×(zi − zj − γ l)(zi − zj + γ l)] exp

(
−

∑
i

|zi |2/4l2

)
(5)

is an appropriate wavefunction form = 7. We have not yet investigated these wavefunctions
for all values ofβ andγ .

Particularly interesting cases areβ = iα for m = 5 andβ = ωα, γ = ω2α for m = 7 if
ω is chosen as exp(2π i/6). The polynomial parts of the wavefunctions for this parameter
choice may also be written as5z(z4 − α4) (for m = 5) and5z(z6 − α6) (for m = 7),
wherez = zi − zj . The correlation functions have a fourfold rotation axis for them = 5
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Figure 3. The difference between the energies per particle in a BRS state withα = 1 and the
Laughlin state as a function ofλ, which is a measure of the well thickness.

wavefunction and a sixfold rotation axis for them = 7 wavefunction. The incipient solid
ordering again will stabilize these states as the well increases in thickness. Form = 5 and
m = 7 we calculate critical valuesλc(m = 5) = 2.9 ± 0.3 andλc(m = 7) = 2.1 ± 1.7,
respectively. The latter is a state which resembles the hexatic state of two-dimensional
fluids.

The directorn = (Reα, Im α) is the order parameter whose appearance signals the
appearance of BRS. The states characterized byn and −n are identical. There is no
independent inversion symmetry operation in our two-dimensional system and thus the
transition to the low-symmetry phase may be second order, unlike the situation for ordinary
three-dimensional nematic systems. Our Monte Carlo calculations suggest that this is indeed
the case, as the equilibrium value ofα is a continuous function oft .

The Ginzburg–Landau free energy for an order parameter of this type is

F = A(T , t)n2 + Bn4 + K1(∇ · n)2 + K2(∇ × n)2 (6)

where t is the thickness andT is the temperature. We expect a second-order transition
whenT = 0 and our calculations have been carried out only at zero temperature. At finite
temperature thermal fluctuations are important.

The free energy expression shows that twists of the order parameter are possible and
lead to textures but also to low-energy excited states. Nevertheless, these excited states
do not involve density changes and the state as a whole is incompressible. We conclude
that the FQHE still occur in this gapless state. The BRS state does not appear to be a
candidate for the Hall insulator phase. The quasiparticle and quasihole excitations are still
gapped and their charges are the usual fractional ones. Their charge density profiles will
have elliptical distortion. Since the projected oscillator strengthf (k) and the projected
static structure factorS(k) depend on the direction ofk, the magnetoroton excitations with
energyE(k) = f (k)/S(k) have dispersion which depends on the direction.
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From the experimental point of view, it appears that the chief difficulty in identifying
the BRS states lies in distinguishing them from the Laughlin state. Correlation functions
are anisotropic, but scattering experiments to test this are difficult to perform in two-
dimensional systems Tensor quantities such as the conductivity have a characteristic
anisotropy (birefringence):σxx(ω) 6= σyy(ω), except at zero frequency, whenσxx(ω =
0) = σyy(σ = 0) = 0, as usual. Propagation of surface acoustic waves or measurements
of the microwave conductivity, perhaps with the simultaneous application of a current to
eliminate domain effects, may be tools which can probe such an anisotropy, and test for the
existence of the BRS states.

From the theoretical point of view, the chief difficulty is obtaining comparisons of BRS
state energies and solid energies of the necessary accuracy. This is also a problem in the
theory of hexatic phases in general [13]. We anticipate that further work will clarify this
issue.

We wish to thank A V Chubukov and M B Webb for useful discussions. This work was
supported by the National Science Foundation under grant No DMR-9214739.
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